$P \ (\mathrm{kg/cm^2})$	T (°K)	$dP/dT \ ({ m kg/cm^2/deg})$	$\Delta V \ ({ m cm^3/mol})$	ΔS (cal/deg/mol)
140.44^{b}	3.148^{b}	34.0	0.116	0.092
130	2.805	27.0	0.118	0.074
120	2.370	19.2	0.100	0.045
112	1.846	11.6	0.072	0.019

TABLE III PROPERTIES⁴ OF THE TRANSITION IN SOLID He³, $\beta \rightarrow \alpha$

^a Smoothed values.

^b Triple point for solid α , β , and fluid.

TA	\mathbf{PI}	F	TT	7
TU	DT.	11.7	TI	

P	ρ He ⁴	o He ³
kg/cm^2	Amagats	Amagats
53.44	46.30	46.28
112.45	94.95	94.81
204.55	166.20	165.99

TABLE V

	CONSTANTS ^a IN	1 Eq. (1) for T	THE VOLUME CH	LANGE OF MELT	ING
Solid	A	В	C	P_m range, kg/cm ²	rms dev. cm³/mol
He ⁴	1.60677	0.33439	-103.25	175-3555	0.0051
$He^{3} \alpha$	1.56464	0.39023	-29.998	51 - 128	0.0064
$\mathrm{He^{3}}\;\beta$	1.51053	0.30825	-42.581	146 - 3555	0.0031

^a Pressure units in kg/cm² and volume units in cm³/mol.

TABLE VI

Constants^a in Eq. (2) for the Various Transitions

Transition	A'	B'	C'	D'	E'	T range, deg K	rms dev., kg/cm ²
Solid He ⁴ \rightarrow fluid He ⁴ I	33.280	-44.156	31.799	-4.8159	0.30313	1.8-5.2	0.23
Solid He ³ $\alpha \rightarrow$ fluid	27.256	-0.64696	16.0205	-1.39505	0	1.2-3.1	0.16
Solid He ³ $\beta \rightarrow$ fluid	3.873	30.5539	4.08176	0	0	3.2-4.4	0.10
Solid He ³ $\alpha \rightarrow$ Solid He ³ β	104.906	0	-0.053454	1.15635	0	1.8-3.1	0.42

^a Pressure units in kg/cm² and temperature units in deg K.

GRILLY AND MILLS

Constants ^a in Eq. (4) for Molar Volumes of Fluid Along the Melting Curve							
Fluid	<i>a</i> ′	<i>b'</i>	<i>c</i> ′	d'	P_m range, kg/cm ²	rms dev., cm³/mol	
He ⁴ II	0	-0.17145	1	27.570	26-30	0.0006	
He ⁴ I	14.854	48.5273	-0.107253	-10.0712	35-3555	0.0097	
He ³	1.075	51.1102	-0.161532	-3.2482	50-3555	0.0137	

TABLE VII

^a Pressure units in kg/cm² and volume units in cm³/mol.

2. Thermal expansion and compressibility of the fluid

The thermal expansion coefficient of fluid He³ along the melting curve exhibits a maximum in the vicinity of the triple point, as shown in Figs. 3 and 4. The maximum is broad compared to that for He⁴ and is less than one-half as large. In general, one expects α to increase with T and decrease with P; however, along the melting curve the "normal" behavior of α_f increasing with decreasing P_m and T_m indicates that P_m changes overcome T_m changes. For He⁴ the maximum in α_f appears to be a direct consequence of the λ -transition. In He³ the nuclear spin part of α_f becomes more negative at lower T, according to Goldstein (25), and it apparently overcomes the "normal" behavior of the nonspin part of α_f .

From values of α_f and β_f in Fig. 4, it is possible to compute the following thermodynamic quantities for fluid He³ along the melting curve:

$$(\partial P/\partial T)_{v} = \alpha_{f}/\beta_{f} ; \qquad (5)$$

and

$$(C_P - C_V) = T V_f \alpha_f^2 / \beta_f \,. \tag{6}$$

These quantities are shown as the curves in Fig. 10. Neither curve exhibits a maximum over the range studied. The plot of $(C_P - C_V)$ versus P_m is linear below 180 kg/cm² and extrapolates to zero at $P_m = 47$ kg/cm². This extrapolation gives a good determination of the point where α_f goes through zero on the melting curve.

The pressure-temperature locus of $\alpha_f = 0$ in the fluid domain is shown in Figs. 5 and 9. For completeness, the point of Taylor and Kerr (26) on the vaporization curve has been included.³ The points represented by open circles were obtained by extrapolation to zero of a series of α_f values measured at constant pressure and various temperatures. This could be done reliably because the slopes were quite constant. Extrapolations were made below about 1.4°K, the

 $^{\rm s}$ Lee et al. (27) also reported a density maximum at approximately 0.5°K, presumably at saturation.